55 | 0 | 2 |
Downloads | Citas | Reads |
绝缘体上的铌酸锂(LNOI)兼具铌酸锂(LiNbO3)晶体优秀的线性和非线性光学性质,及易于光子器件加工和集成的特性,被认为是集成光学的潜在平台之一。研究通过电感耦合等离子体反应离子刻蚀系统(ICP-RIE)制备了一种L型LNOI超表面结构,基于传统工艺步骤进一步提出了优化策略。主要包括,修正曝光图形,精准调控L形状;降低镀膜速率,提升掩膜的致密性与均匀性;调整刻蚀气体成分,引入氢气,消除样品副产物。实验结果表明,此优化工艺使L结构表面平整度显著改善、侧壁陡直度提高,尺寸符合理论设计。其二次谐波产生(SHG)强度相比LNOI大约提高5倍。该研究将推动铌酸锂晶体光学元件制备和集成技术的发展。
Abstract:Lithium niobate on insulator(LNOI) combines the excellent linear and nonlinear optical properties of lithium niobate(LiNbO3) crystals with advantages of facile photonic device processing and integration, and is considered as one of the potential platforms for integrated optics. In this study, we fabricated an L-shaped LNOI metasurface structure by an inductively coupled plasma reactive ion etching system(ICP-RIE) system, and proposed an optimization strategy to enhance the traditional process. The method involves correcting the exposure pattern to precisely control the L shape, reducing the coating rate to improve mask density and uniformity, and adjusting etching gas composition by introducing hydrogen to eliminate the by-products of the sample. The experimental results show that this optimized process significantly improves the surface flatness of the L structure, increases the sidewall steepness, and ensures the dimensional conformity with the theoretical design. The second harmonic generation(SHG) intensity is approximately five times higher than that of LNOI. This study promotes the development of the preparation and integration technology of lithium niobate crystal optical components.
[1]Gao F B, Ren M X, Zheng D H, et al. Long-lived lithium niobate:history and progress[J]. Jouranl of Synthetic Crystals,2021,50(7):1183-1199(高博锋,任梦昕,郑大怀,等.铌酸锂的耄耋之路:历史与若干进展[J].人工晶体学报,2021,50(7):1183-1199(in Chinese))
[2]Liu Y M, Zhang X. Metamaterials:a new frontier of science and technology[J]. Chemical Society Reviews,2011,40(5):2494-2507
[3]Qu L, Wu W, Cai W, et al. Second harmonic generation in lithium niobate on insulator[J]. Laser&Photonics Reviews,2025,19(11):2401928
[4]Tian X H, Shang M H, Zhu S N, et al. Lithium niobate based photonic quantum devices and integration technology:opportunities and challenges[J]. Physics,2023,52(8):534-541(田晓慧,尚鸣昊,祝世宁,等.铌酸锂基光量子器件与集成技术:机遇与挑战[J].物理,2023,52(8):534-541(in Chinese))
[5]Zhu D, Shao L B, Yu M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics,2021,13(2):242-352
[6]Fedotova A, Younesi M, Sautter J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate[J]. Nano Letters, 2020, 20(12):8608-8614
[7]Zhang X T, He L Y, Gan X, et al. Quasi-bound states in the continuum enhanced second-harmonic generation in thin-film lithium niobate[J]. Laser&Photonics Reviews,2022,16(9):2200031
[8]Hill S J. Inductively coupled plasma spectrometry and its applications(2nd edition)[M]. Oxford:John Wiley&Sons,2006:61-79
[9]Guarino A, Poberaj G, Rezzonico D, et al. Electro–optically tunable microring resonators in lithium niobate[J].Nature Photonics,2007,1(7):407-410
[10]Lin J, Leven A, Weimann N G, et al. Smooth and verticalsidewall InP etching using Cl2/N2 inductively coupled plasma[J]. Journal of Vacuum Science&Technology B,2004,22(2):510-512
[11]Guilet S, Bouchoule S, Jany C, et al. Optimization of a Cl2–H2 inductively coupled plasma etching process adapted to nonthermalized InP wafers for the realization of deep ridge heterostructures[J]. Journal of Vacuum Science&Technology B,2006,24(5):2381-2387
[12]Wieczorek A, Djara V, Peters F H, et al. Inductively coupled plasma deep etching of InP/InGaAsP in Cl2/CH4/H2based chemistries with the electrode at 20°C[J]. Journal of Vacuum Science&Technology B,2012,30(5):051208
Basic Information:
DOI:10.13922/j.cnki.cjvst.202504003
China Classification Code:O437;O734
Citation Information:
[1]姚雪盈,常文瑶,郭子瑞,等.L型铌酸锂超表面工艺优化研究[J].真空科学与技术学报,2025,45(08):645-650.DOI:10.13922/j.cnki.cjvst.202504003.
Fund Information:
国家重点研发计划项目(2024YFA1207704); 国家自然科学基金项目(92265110; 62174179); 河北省教育厅科学研究项目(QN2024128); 中国科学院战略性先导科技专项项目(XDB33020200)